Incipient Fault Feature Extraction for Rotating Machinery Based on Improved AR-Minimum Entropy Deconvolution Combined with Variational Mode Decomposition Approach

نویسندگان

  • Qing Li
  • Xia Ji
  • Steven Y. Liang
چکیده

Qing Li 1,* , Xia Ji 1 and Steven Y. Liang 1,2 1 College of Mechanical Engineering, Donghua University, Shanghai 201620, China; [email protected] 2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +86-021-6779-2583; Fax: +86-021-6779-2439

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

A Novel Method for Multi-Fault Feature Extraction of a Gearbox under Strong Background Noise

Strong background noise and complicated interfering signatures when implementing vibration-based monitoring make it difficult to extract the weak diagnostic features due to incipient faults in a multistage gearbox. This can be more challenging when multiple faults coexist. This paper proposes an effective approach to extract multi-fault features of a wind turbine gearbox based on an integration...

متن کامل

Incipient Fault Diagnosis of Rolling Bearings Based on Impulse-Step Impact Dictionary and Re-Weighted Minimizing Nonconvex Penalty Lq Regular Technique

The periodical transient impulses caused by localized faults are sensitive and important characteristic information for rotating machinery fault diagnosis. However, it is very difficult to accurately extract transient impulses at the incipient fault stage because the fault impulse features are rather weak and always corrupted by heavy background noise. In this paper, a new transient impulse ext...

متن کامل

Fault Feature Extracting for Rotating Machinery Vibration Based on Blind Deconvolution and Spectral Kurtosis

Rotating machinery vibration analysis involves a convolute mixture because of the propagation medium, and the signals recorded by sensors in an industrial application are often disrupted by the environment. Deconvolution is a signal processing method for convolution of vibration sources, spectral kurtosis is a statistical tool which can indicate the presence of series of transients and their lo...

متن کامل

Intelligent Fault Diagnosis System using BEMD based Thermal Image Enhancement And Support Vector Machines

This study proposes an investigation of a novel thermal image enhancement based on bi-dimensional empirical mode decomposition (BEMD) and applies this method for rotating machinery fault diagnosis system. In this work, thermal images of machine conditions are firstly decomposed into intrinsic mode functions (IMFs) by utilizing BEMD. At each decomposition level, the IMF is expanded and fused wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017